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ABSTRACT

This report describes basiec expertmental and theorctical investi-

gations ol the interaction ot projectiles and lightweight armor, Tive

armor of interest is a verv hard and relatively intlexivle tacing nlate
(ceramic) bonded to a tlexible backing plate (fiber glass or aluminum

allov) .,
The theoretical work concerns:

(1) development of an analvtical model 1or describing the
restraining mechanisms ot the armor and for prediction
of ballistic Jlimit-

(2) checkout and use of a simple computer code for obtaining
stress ficlds in brittle tacing plates and projectiles
caused by impact at normal incidence.

The experimental work concerns:
(1) the use of high-speed photography and flash N-ray
techniques for specific investigations such as observing

fracture conoids in tacing plates

(2) cdemonstrating that stresses in ceramic facing plates
can be measured by manganin stress gages,

itil
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I INTRODUCTION AND SUMMARY

A, Introduction

This report” describes a continuing experimental and theoretical
investigation of the interaction of hard steel projectiles and light-
weight composite armor, The armor of interest consists of a very hard,
relatively inflexible, facing plate of ceramic (aluminum oxide) bonded
to a tlexible backing plate (fiber glass or 6061-T6 aluminum alloy).

The ultimate objectives of this investigation are to describe the
mechanisms of interactior and to determine their dependence upon material

and geometric properties,

This work is a continuation of earlier work carried out at Stanford
Rescarch Institute.1 Based on experimental and theoretical results
reported in Ref, 1 and results of this study, a description of the
sequence of events that occurs when an cogive-shaped hard steel projectile
strikes composite armor with a ceramic facing plate backed by a flexible

plate is as follows:

1. The tip of the projectile is shattered into many small
fragments (1 mm). Shattering occurs because radial and
circumferential tensile stresses greatly exceeding the
fracture stress are immediately set up at the tip. These
small fragments move radially across the surface of the
ceramic face at about twice the proje.tile velocity.
(These fragments carry off about 7% of the kinctic energy
in the case of the all-steel projectilec used in the
experiments.) Shattering also causes an increase in the
projectile~plate contact area (due to the ogive shape)
and consequently produces a spreading of the load on the
nlate.

2, Comminution and fine cracking of the ceramic facing
material spreads from the impact zone because of an
cxnanding field of large tensile stresses; this field
follows u compressive wave front, Ceramic powder is
cjected from around the projectile impact area, The
volume ocecupled by fine cracking is conoidal in shape.

*

Part I is Reference 1,




3. Cracking at the face opposite to the impact zone develops
rapidly. Initially, this cracking is predominantly radial,
because the expanding tensile stress field has large circum-
ferential stress components moving ahcad of other stress
components, The density of cracking decreases away from
the impact zone because of geometrical attenuation of the
tensile stress field and, apart from some radfal cracks,
is lergely confined to a conoildal-shaped volume,

4, The projectile and broken ceramic exert pressure on the
flexible backing over a circular area with a diameter a
little larger than the diameter of the fracture concid basce,
The backing absorhs energy initially by bending and
ultimately by stretching.

The extension of the work of Ref. 1 reported here concerns:

¢ Creation of a simple analytical model to describe the
restraining mechanism of composite armor and to
predict baliistic limits (Section II).

¢ Checking and extension of a computer program for
describing stress waves generated in projectiles
and facing plates by impact (Section III),

* Further experimentation with a high-speed camera and an
X-ray unit to describe projectile-armor interaction

(Section 1IV),

* Study of the use of manganin stress gages to establish
strecs profiles in ceramic facing plates (Section V).

B. General Conclusions

A simple analvtical model has bteen formulated to describe the
restraining action of composite ermor. Experimental observations and
results are used in the formulation but it may be possible in the
future to replace this portion with a simple theoretical description,
Fredictions of ballistic limits are reasonable enougn to justify

pursuing this approach in armos research,

The computer program of Ref, 1 that describes clastic stress
waves 1ir. projectiles and hard facing plates hasg been ehecked in special
impact cases by comparison with two other progrims, The program has
also been extended to include 2 yield condition, The stress distri-

butions are compatible with observed fracture patterns, 7To complete




the deseription, rescarch is necessary to establish a fracture criterion

for inclusion in the computer program,

Experiments with ceramic plates have provided evidence that if the
plave is thick cenough an integral fracture conoid is punched out by the
projecvile,  Low impact velocity cxperiments with glass blocks and mild
steel projeciiles also show the formation of an integral fracture conoid,
This conoid shape is independent of the impact velocity and is probably
o strong function of the plate sound velocity., Thus, armor experiments
can be designed using glass facing plates to study breakup of opague
ceramic facing nlates.,

Use of manganin stress gages is feasible for establishing compressive

wave fronts in ceramic facing plates. The results are invaluable for

correlation with theoretical predictions.

W




IT RESTRAINING ACTION OF A FLEXIBLE BACKING LAYER

Introduction

When o projectile strikes the hard ceramic facing of composite
armor, most of the momentum is spread over a circular area, the diameter
of which is dependent on the mechanical and geometrical properties of
the projectile and ceramic facing., The fiber glass or aluminum alloyv
backing that is bonded to the ceramic is a flexible layer that bends
and stretches to absorb the kinetiec energy of the projectile and broken
ceramic within the circular area. Experimental observations indicate
that for much of the motion the backing remains bonded to the ceramic

facing outside the circular area thus contfining most of the kinetic

energy obhsorption to the backing within the circular area, Consequently,

the backing can be analvzed as a circular membrane or plate fixed at the

circular boundary and having an initial mass and velocity distribution.

B. Anclytical Model

A simnle model for describing the action of two-laver composite
armor is illustrated in Fig. 1. The projectiic is idealized to a short
cvlindrical rod with a diameter equal to that of the armor-piercing
core, The diameter of the circular area of the backing over whieh the
momentum is spread is taken s the base diameter of the fracture conoid
in the ceramic facing, Finally, the backing is assumed to respond as a
circular membrane. The mass of the membrane is approximated by a uniform
mass that is the average over the circular area of the sum of the masses
of the projectile, ceramic conoid (approximately conical), and the
backing layer within the ecircle. The velocity distribution 1s associated
with the fundamental mode of vibration of the circular membrane with a

peak value determined by momentuin conservation,
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FIGURE 1 DESCRIPTION OF ANALYTICAL
fAODEL

The analysis of the membrane is contained in Appendix A, One of
the results obtained is the following simple formula for the maximum

strain 32
r
ar = 1,82 - f(a) -« K/S (D

where f(a) 1s a simple ratio, K is the kinetic energy of the pro-
Jectile before impact, and S 1is the constant tension in the membrane.
In terms of the projectile mass Mp, projectile velocity Vp, ceramic
mass per unit area mc, backing mass per unit area mm’ conoid base

radius a, backing material vield stress <, and backing thickness hm,
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ntp c m

*
An approximation tc experimental results reported here for aluminum oxide

is the econoid basce radiue a = a  + 2h , where a is *he projectile
n < 15
radius and hc is the ceramie thickness (see Fig., 1) . The behavior of the

backing waterial is taken as rigid plastiec, which is reasonable for

6061-TG aluminum alloy, a commonly used material in composite armor.

By using a maximum strain failure criterion in the backing material,
tormula (1) predicts a ballistic limit
1,2
vV = [:570.,91 M i(a)] (2)
r 9} ;

C. Armor Weight Optimization Using the Analvtical Model

The simple analyvtical model cun be used to minimize the areal

density of a ceramic-aluminum armor. This optimization is now described
for a standard 0.30-caliber AP (Armor Piercing) projectile with a nass

Mp = 10 g, The radius of the idecalized cylindrical projectile is taken

as the radius of the core of the AP projectile, that is, ap = 0,125 inech.
The fracture strain and vield stress for the aluminum alloyv backing
material (6061-T6) are taken as z. = 0.15 and o= 3 x 10° dynes/cmz
(14,000 lb/inz). The remaining properties required, the densities of the

3 3
ceramic and zluminum, are :n = 2.7 g/em and gC = 3.6 g cm
1

For a given backing or menbrane thickness hm' a prejectile
velocity VD producing strain ar = 0.15 4n the aluminum is predicted
by lformula k2) for cach chosen value of ceramic thickness hc' Thus
curves of the type shown in Fig., 2a are readily obtained. Figure 22
shows three curves corresponding to membrane thicknesses of h = 178,

m
174, and 3 8 inch. If the projectile velocity 1s 3000 ft scec the

*
Aluminum oxide AD94, manufactured by Coors Porcelain, Golden, Colorado,

7
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required coramie thicknesses accompanying these meabrane thicknesses
are hp = 0,545, 0,44, and 0,385 {nch, as indicated in Fig. 2Z2a by the
vvrticgl dashed linos, Flgure 2bh shows a curve through thesce ceramic
and aluminum thickness points. Plotting instead the ar al density

M + mm of the armor against the aluminum thickness results in the
upper curve shown in Fig. 2c.

The upper curve in Fig, 2¢ shows that the predicted minimum areal
density required to defeat an 0,.30-caliber AP projectile impacting at
3000 ft sec is about 5,7 g Cmg (11.3 lb/ftz), the thicknesses of the
ceramic and aluminum being about 0.47 and 0,20 inch. For an impact
velocity of 2800 ft/sec these quantities are 5.5 g/cmL (11.0 lb/rtz),
0,15 inch, and 0,20 inch. Ballistic test results siow that the ballistic
Mmit is 2850 = 50 ft sec for ceramic and aluminum thicknesses ot 6,34
and 0,25 inch giving an arcal density of 4.82 g,cm2 (9.R lb/ftg). Thus
for the example of composite armor consisting of aluminum oxide facing
and 6061-T6 aluminum alloyv backing being impacted by an 0,30-caliber

AP projectile, the simple anulvtical model provides approximate thick-

nesses for minimum weight for cach projectile velocity.,

D. Conclusions

The above example demonstrates that a simple analvtical model can
be uscful for approximate ballistic 1imit predictions., It is alwavs
possible to refine a model but only at the cxpense of simplicity.

Future work should concentrate on generating possible aliternative nodels,
finding the degree of refinement attainable before simplicity is for-
feited, and incorporating newly acquired theory whenever it can simply
replace cempirical relations. The latter improvement applies to the
determination of the ceramic cone size in the model described above.

The construction of analytical models should be guided by experimental
observations and numerical solutions of impact problems, and the pre-
dictions correlated with experimental results, Ouce confidence has been

established in a model it may be used for predictions,
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TI1 STRES WAVES IN A PROJECTILE AND BRITTLE FACING PLATE

A, Introduction

In Ref. 1 2 numerical schemez was adopted for solving finite-
difference analogues of the elasticity equations governing stress wave
propagation in a steel projectile and a ceramic layer caused by axial
impact (projectile idealized as a circular cylinder). Because analytic
solutions for this impact problem are not avaeilable the above numerical
scheme was tested in this project by correlating results with the results

7

stemming f{rom a different numerical scheme. Agreement between the
results of the two computer programs was found to be satisfactory.
Another check on the computer program was performed by comparison with
results from SRI PUFF 2 codes for the special case of one~-dimensional
plane strain waves caused by the impact of two plates. Again, agreemont

was satisfactory.

T™wo sets of results are presented below. In the first set (Figs. 3
and 4), principal planes within the projectile and facing plate are -
indicated whercver the maximum tensile stress exceeds about 7 kbar,
The orientations of these planes indicate tne probable fracture planes,
The results given in Fig. 3 and 4 are refined and extended versions of
results already reported in Ref, 1. In the seco..d set of results (Figs,
5 and 6), a von Miscs vield criterion has been employed, which has the . -
effect of limiting the distortional component of stress (as opposed to '
the hydrostatic component of stress) acting on each material element.
After a scarch of the literature on fracture it was decided that {nfor-
mation was insufficient to incorporate a meeningful fracture criterion.
It is believed that this situation can be remedied with an experimental
program with ceramics that establishes spall thresholds frouw re.lection

of uniaxiel strain waves generated by plate impact.
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B. Theoreticel Results

The data used in the computations ot stress fields caused by

rod-plate impac: at 2400 ft sec ave:

Plate Rod Units
Material Al oxide (AD94) steel
o . 3
Density 3.6 7.8 g/cm
' - (] 6 2
Young's modulus 39.6 x 10 30 x 10 1b/in
) 3 [ 2
Shear modulus 15.8 » 10 11.6 x 10 ib/in
6 6 2
Bulk modulus 26.4 x 10 23.8 x 10 1b/in
Poisson's ratic 0,25 0.29
Dilatational velocity 31,300 19,300 ft/sec
3 3 2
Yield stress 1150 x 10 100 x 10 1b/1in
{(compressive)
3 3 2
Yield strass 43.5 x 10 100 x 10 1b/in
(tensile)
Thickness 0.34 in
Diameter 0.24 in

Figures 3 and 4 correspond to elastic material behavior., Each of
the nine diagrams in each figure displays a meridional plane at a
certain time and the lines and dots indicate where tensile stress
compunents have exceeded 7 kbar. These stress components act per-
pendicularly to the lines shown in Fig. 3 and perpendiculavly to the
meridional plane in Fig. 4. Thus Fig. 3 shows the probable characters
of axisymmetric fracture patterns whereas Fig. 4 indicates where radial

cracking is likely (but not of course how many radial cracks will occur).

Figures 5 and 6 correspond to elastic-perfectly plastic material
behavior, and it is seen by comparison with Figs. 3 and 4 that intro-
ducing a yield condition has the effect of reducing considerably the

region where fracture 1s likely.




[ Conclastions

A simple computer prograem for solving the axisymmetric equations

of c¢lasticity, with or without a yield criterion, predicts stress

fiolds

observed

2

brittle facing plates and projectiles compatible with

fracture patterns. The program is of value for:
Correlation of predictions with experimental results,

Providing a basis for including a fracture criterion
once one has been established.

Guiding the formulation o1 a simple model for the
tacing plate mechanism,

13
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IV EXPERIMENTAL OBSERVATIONS OF PROJECTILE-~ARMOR IMPACT

AL Introduction

Impact experiments were conducted with 0,30~ and 0,438-caliber
projectiles and target plates of aluminum oxide, boron carbide,
aluminum oxide hacked by fiber glass, aluminum oxide backed by €061-T6
aluninum alloy, and glass, The immact events were recorded by X-ray
or framing camera, The objective of the experiments was to record
breakup and deformation characteristics of projectiles and composite
arnor facing and backing plates. These characteristics not only con-
tribute to the understanding of projectile/armor interaction but are
indispensable for formulating a theoretical description of the inter-
action, both by simple analytical models and numerical analysis with

compuier codes,

The main experimental parameters are listed in Table I. Each of
the figures in the following pages which show radiograph records
(¢except for Fig., 20) consists of a sequence of from two to five events,

and each event represents a different but identical experiment.

A summary of the conclusions based on the experiments listed in

Table I follows the discussions.

B. Discussion of Experimental Results

Figure 7 shows an 0,458-caliber projectile impacting an 0,233-inch~-
thick acramic tilce at a veloecity of 1800 ft/sce and at normal incidence. The
impact stresses cause a shattering of the nose tip and shorten the
projectile, which was originally 1-11/16 inches long by about 5/16 inch.

The diameter of the breakup areca of the ceramic is about 1-1/2 inches.
Figure 8 is a similar sequence of events except that the tile is 0,373
inch thick, Not only has the projectile tip shattered but the re-

mainder of the projectile has broken into two or three large nieces.




The diameter of the breakup arca of the ceramic has increased to about
1-7/8 dnches, A third similar sequence ot cvents is shown in Fig. 9
with a tile 0,60 inch thick, the maximum thickness used in the experis-
ments., The projectile has now fractured into sti111 more pieces and has
become disoriented., Based on measurcements made from Fig. 9b, the
diametcer of the major breakup area of the ceramic has incrceascd to

about 3-3/8 inches.

Figure 10 shows wir 0,108~caliber projectile impacting an 0,375-
inch-thick tile at 1800 ft sec and at a 450 angle of incidence. The
projectile shattering {s similar to that occurriung at normal incidence
(Fig. 8) but a major fracturc is oriented across the projectile and is
caused by the asymmetrical stress distribution., Also, the tile has the
cffect of rotating the projectile. The area of ceramic breakup appears
to be similar to that occurring for comparable impact at nermal incidence,
but the momentum distribution that would be appliced to a backing plate,

were it present, would be quite different.

Figure 11 shows a standard 0,30-caliber projectile impacting an
0.233~inch-thick tile at a velocity of 2400 ft/sec and at normal inci-
dence, A small portion of the tip of the hard steel core hLas been
shattered and the copper jacket has been partially removed. Based on
measurements made from Fig. 11b the diameter of broken ceramic is about
1-1/2 inches., Figure 12 is a repeat of this experiment but with an
impact velocitv of 2800 ft/sec. More of the core tip has been removed

but the diameter of the broken ceramic remains about 1-1/2 inches.

Figure 13 describes the impact when the velocity is 2400 ft/sec
and the ceramic tile is 0,60 inch thick. These records are especially
interesting because, as can be seen in Fig. 13c¢c, the rear surface of
the tile remains flat and parallel to the rear surfsce of the tile beforec
impact over a circular area of about 1-1/2 inches in diameter., Figure 13d
reveals that this portion -7 the tile is a fracture conoid of a height
approximately equal to the tile thickness, A rough measurement of the
"cone" angle is 660. Such conoids have bheen observed in glass blocks

1
struck at low impact velocity suggesting a simila: .-y boetween the

mechanics taking part in the glass and ceramic experiments. (This
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similarity is discussed further in the description of Fig. 20 below,) The
jacket of the projectile is completely removed and the core is {ractured.
Figure 14 describes a repeat cxperiment except for the impact velocity
which is 2800 ft/scc. Figure 14b shows a rear surface displocement similar
to that in Fig. 13c. The conoid is not as well preserved (Fig., 14¢) due
to more extensive fracture. The sizes of the ceramic fracturce regions are
comparable., The fracture conoid assumed in the analytical model is shown
in Fig. 13c.

Figure 15 shows the oblique impact at 2400 ft/sec of an 0,30-caliber
projectile and a ceraric tile 0.60 inch thick, the angle of incidence
being 450. The projectile is rotated by the tile and the emergence of

a fracture conoid can be seen in Fig. 1l5c.

The experiment recorded by Fig. 13 was repeated before a Beckman
and Whitley 189 framing camera. The underside of the 0.60-inch-thick
tile was spraved black to form a contrast with the white aluminum
oxide, so that cracks could be scer more clearly. Figure 16 is the
framing camera record showing the breaking of the tile as viewed from
an angle of 100 to the rear surface. Initially a circular crack forms
along with about 16 radial cracks outside the circle. Later another
concentric circular crack of larger diameter appears, The region
inside the inner circular crack is the base of the fracture conoid. 1In
the annular region are wedges of ceramic connecting the base of the
conoid with the relatively motionless outer portion of the tile. During
the recording period the conoid base moves parallel to itself while the
wedges rotate about the outer circle., This motion corresponds to the

radiographk record (Figs. 13c and 13d) of the identical experiment.

Figure 17 is a framing camera record showing the breakup of an
0.45-inch-thick boron carbide tile as viewed from an angle of 10o to
the rear surface. The rear surface was sprayved white to form a contrast
with the black boron carbide. The tile was impacted at normal incidence
by an 0.,30-caliber projectile with a velocity of 2400 ft/sec. It is
seen that the main breakup is confined to the region within a circle
about 1-1/8 inches in diameter. Failure outside this circular region
consists of radial cracks extending to the edg. of the plate. Figure 17

shows that the breakup mechanism is similar to that of aluminum oxide.1
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Sigure 18 shows the detformation of an 0,20 =-inch-thick backing plate
ot fiber glass, attached to an 0.34-inch-=thick aluminum oxide tacing
plate, causcd by impact at 2400 ft/sce with an 0,30-caliber projectile.
Initially the r¢ training region of the backing is continced to the
circular region corresponding to the base circle of the conical fracture
region of the tacing. Because of the ultimate radial spreading of bond
failure the circular region ot backing materi.l increases and ailows an
increasing quantity of backing material to be stretched and conscquently
tc absorb kinetic energy. Provided the backing is not separated from
the facing over an entire panel and jrovided reascenably large detlections

are permissible, this is a good stopping mechanism,

Figure 19 shows the deformation of an 0,25-inch~thick backing plate
of 6061-T6 aluminum alloy, attached to an 0.3d-inch-thick aluminum oxide
facing plate, caused by impact at 2400 tt/scc with an 0,30-calibur
projectile. Most of the deformation is concentrated within a circular
region corresponding the base circle of the fracture conoid in the facing.
Inside this circular region plastic membrane stretching is the principal
energy absorbing mechaniswm, Outside this circular region the backing
plate displayvs the opposiite curvature and deformations small cnough to
regard plastic bending as a significunt energy absorbing mechanism. The
radius a assumed in the analytical model is shown,

Figure 20 shows the development of a fracture conoid within a
1-1/4-inch-thick glass block caused by impact at 350 ft/sec with an
0.3C-caliber round-nsse projcetile of 1015 steel, The angle of the
average cone approximating the conoid is about 500; this compares with
the ceramic cone angle of about 660 from Fig. 13, This experiment and
earlier work1 show that a transparent brittle material such as glass
can be used in appiopriately designed experiments to acquire qualitative
information on breakup of opaque ceramic due to projectile impact,

The steel was chosen to provide a projectile material that is softer

bur denser than glass. Also, the impact velocity of 350 ft sece was
arrived at through several trials to obtain comparable sracturce damage
in the glans and an 0.60-inch-thick ceramic tile impacted at 2400 ft 7 scc

Ly an 0.30-caliber AP projectile (see Fig. 13).
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C. Cenclusyons

1
From the preceding experimental results and from carlier work

it 1s concluded that:

1.

1™

3.

The extent of projectile breakup increases with ceramic
facing thickness.

The major breakup of the facing 1s confined to a conoidal
region with a base circle increasing with ceramic thlck-
ness. (Experimental results form the basis for approxi-
mating the radius of this circle by a = aj + 2hc in the
formulation of the analytic model of Section II, where

a is the projectile radius and hc is the ceramic
thickness.)

Clear evidence of integral conoidal fractures in
ceramic has been obtained.

Qualitativey.y, boron carbide tiles break up in a manner
similar to tnat of asluminurm ovide tile:,

Initial deformation of a flexible backing plate occurs
over a circle approximately cqual to the base circice
of the fracture conoid. (This information was iacor-
porated in the analyvtical model of Section II.)

Experiments can be conducted with a brittle transparcnt

facing material such as glass to study the interaction
of opaque ceramics and projectiles,
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58.33

GP-7303-19

17500,

OBLIQUE REAR VIEW OF 0.600-INCH-THICK CERAMIC TILE

FIGURE 16
IMPACTED AT 2400 FT/SEC BY 0.30-CALIBER PROJECTILE
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83.33usec 125.00

91.67 133.33

100.00 ’I4IG7E e ‘)“_‘: E ]
. - 7 dee DES - ’

108.33 150.00

116.67 ‘158.33

PEEETE R

P -7303-20

o FIGURE 16 OBLIQUE REAR VIEW OF 0.600-INCH-THICK CERAMIC TILE IMPACTED
AT 2400 FT/SEC BY 0.30-CALIBER PRQUJECTILE (Concluded)




FIGURE 17

B,C TILE
0.43" THICK

OBLIQUE REAR VIEW OF 0.30-CALIBER STANDARD AP PROJECTILE
IMPACTING 0.43-INCH-THICK BORON CARBIDE TH.E AT 2400 FT/SEC

B.33 usec Between Frames
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4
FIGURE 18 IMPACT AT 2400 FT/SEC OF 0.30-CALIBER PROJFCTILE
: AND COMPOSITE ARMOR (0.34-Inch-Thrick Aluminum Oxide
‘J" Bonded to 0.25-inch-Thick Fiber Glass)
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FIGURE 19 IMPACT AT 2400 FT'SEC OF 030 CALIBER PROJECTILE
AND COMPOSITe ARMOR (034 Inch-Thick Aluminum QOxide
donded to 0.25 tnck Thick £061 18 Ajuminum)
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GLASS BLOCK
1% THICK

0.30 cal PROECTILE

0.00 psec

B8.33

16.67

GP-7303-20

FIGURE 20 CONOIDAL FRACTURE FORMATION IN A 1%-INCH-THICK

GLASS BLOCK IMPACTED AT 350 FT/SEC BY AN 0.30-
CALIBER ROUND-NOSE PROJECTILE OF MILD STEEL
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V IMPACT STRESSES IN ALUMINUM OXIDE

A, Introduction

An aspect of experimental investigation into projectile-armor
interaction that has received little attention is the determination
of the stress wave in a facing plate generated by impact. In this
section experiments are described and results p;esented to illustrate
the feasibility of mcasuring the compressive stress profile at the wave
front by means of a piezoresistive manganin stress gage. The stress
prcfiles, when correlated with the predictions of computer programs,
form a valuable assessment of the constitute equations employed.
Another use of the technique is in ascertaining dynamic material pro-
perties including fracture behavior. This use requires a one-dimensional
or plane strain wave in the facing and is generated by impact with a

flat flver plate.

B. Description of Experiments

A small 7-shaped piece of manganin foil 1/2-mil thick is centrally
located and sandwiched between two plates of aluminum oxide, as shown
in Fig. 21, Electrical leads from the gage pass through holes in the
rear plate. The 0.,458-inch~-diameter hard steel projectile strikes the
front plate immediately opposite the gage (Fig. 21a). In the flyer
plate experiments a 50-mil-thick steel flyer is driven by sheet
explosive* and arranged to strike the entire front surface of the ceramic
simultaneously (Fig. 21b) . Further details of the experiments, including
the circuitry, are contained in Appendix B, Upon reaching the gage the
stress wave causes 3 change in electrical resistance in the manganin,
which has a constant current flowing through it, and the resulting

increase in voltage across the gage is recorded on oscilloscopes. This

»
Detasheet D, manufactured by du Pont.
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ALUMINUM ALUMINUM
OXIDE OX1DE

STEEL PROJECTILE
V = 1450 ft/sec

MANGANIN GAGE |- MANGANIN GAGE
g
(i' =

W

STEEL FLYER /
V = 1675 fi/sec

PR
(s) PROJECTILE EXPERIMENT (b) FLYER EXPERIMENT GA-7303-37

FIGURE 21 SCHEMATIC EXPERIMENTAL ARRANGEMENTS

voltage change is proportional to the stress., The response time of the
manganin foil stress gage is about 30 nsec so the wave front is recorded

quite accurately,

C. Experimental Results

From the oscillograms, of which two samples are displaved in Fig. 22,
the pcak stresses listed in Table Il were obtained. Pecak stresses generated
at the impact surface as predicted by one-dimensional lirear-eclastic theory
were 97 and 84 kbar in the flver and projectile experiments, indicating
that peak stresses of about 120 kbar recorded a distance of 0,217 inch from
the impact surface are reasonable. Additional confidence in the experimental
technique is obtained from the axisymmetric linear-clastic computer program
predictions of 90, 70, and 45 kbar at distances of 0,217, 0,375, and 0,540
inch from the projectile (compured with about 123, 72, and 43 kbar in
Table II). Also, thc decrease in peak stress with distance into the
ceramic is much greater in the case of the projectile impact because
of the "spherical” divergence of the wave. Another observation is the
difference in wave shapes arising in the flyer and projectile experi-
ments as is seen by comparing Figs. 22a and 22b., 1In the case of flver
impact (Fig. 22a) the stress rises uniformly to a pecak stress of 98 kbar

in about 0.4 usec and decays approximately in an exponential manner,
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whereas in the case of projectile impact the stress profile exhibits a
platecau for about 1.2 wsecc before achicving its peak value of 81 kbar.
The recording time in both cases is about 4 wsec, which corresponds to
the time taken for the wave front to travel to the rear surface of the
rear ceramic tile (0.55 inch thick), where it reflects as a tensile wave,

and back to the manganin.
D. Conclusions

It is concluded that the above study demonstrates the [easibility
of emploving manganin stress gages in the study of wave propagation in
facing plates of armor caused by projectile impact. The stress gages can
a2lso be used for the determination of dynamic msaterial preoperties by plane
wave cxperiments,

Table 11

PEAK STRESSES (kbar) IN ALUMINUM OXIDE

Fron: Tile Steel Flyver Steel Projectilea
Thickness 50-)Mils Thick 0,458-Inch Diameter
(inch) 1675 ft/scec Velocity 1430 ft/sec Velocity
0,217 122 123
121
0.375 98 63
115 81
b
0.550 107 43

aFlat-nosed projectile guided for planar impact.

bRccord quality only fair.




(a) STEEL FLYER, V =~ 1675 F/SEC

B! FLAT-NOSED STEEL PROJECTILE. Vv - 1450 F (/SEC

FIGURE 22 MANGANIN GAGE RECURDS
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Appendix A

IMPULSIVE MOTION OF AN ELASTIC MEMBRANE

The motion of a uniform wemnbrane of radius a under a constant
tension S per unit arc length is governed by the partial dirferential

equation

1 1
v tIVL. T B Yet A-1)

O

where y(r,t) 1is the transverse deflection and c2 = S'm (sce Fig. A-1a).
In (A-1), subscripts denote partial differentiation with respect to the
space and time coordinates v and t. The mass m per unit area of
membrane is taken to be the sum of the mass mm per unit area of the
membrane itself, a uniform laver of attached mass mC per unit are=a
(broken up ceramic), and the mass mp per unit area o»f a projectile of

mass Mp assumed uaiformly distributed over the membrane.

The effect of the projectile-ceramic impact is assumed to be the

creation of an initial velocity
. r.o - v 3 by r A-2
‘Vt( ! ) 0( o ) ( )

as sketched in Fig.A-1b where JO is-a Bessel function of zero order
and \O iz a number such that Jo(Koa) = 0. An initial velocity distri-
bution of this form is not an unreasonable approximation to realityv but
the particular choice of function is motivated by the simplification

that results in the solution of (A-1); (A-2) recduces the solution to the

first mode or eigenfunction. The appropriate boundary condition is

v(a,t} = 0 (A-3)
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By representing the solution as the product of two thmetions

vir,t) = R(r) T(t) (A=)
it follows from (A-1) that
RY7/R + R'/rR = T''/¢°T = =32
where the primes denote differentiution and * is a constant, as yet

undeterminred. Hence R o and T must satisfy the equations

2
R+ By + AR = 0 (A-5)
b2
T 4 3%t = 0 (A-6)

The solutions of (A-5) and {(A-6) arc

R= AJ (r) + BY ()\r) (A-T)
(A o

T = C sinict + D cosict (A-8)

For a membrane initially at rest, that is, vy(r,o) = 0, it follows
from (A-8) that D = 0, Since Yo(kr) beeccemes infinite as r approaches
zero its ccefficient must be set equal to zero for finite displacements
at the plate center; hence B = 0, The boundary condition (A-3), for
nontrivial solutions, is satisfied if Jo(ka) = 0, which has infinitely
many roots. Naming the nth root xp, the solution is

v(r,c) ACJ (L r) sin: ct (A-9)
nnao n n

ci i3

which represents the sum of the eigenfunctions corresponding to the

eigenvalues ]n
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Time differentiation of (A-9) yields the velocity with the initial

value of

o0
vy (r,0) =¢ XA C J (' r) (A-10)
t o nnn o n
Since the specified initial velocity its (A-2), 1t follows from the
orthogonality property of the eigenfunctions JO(an) that CXOAOBO =V

and A B =0, n # 0. Hence
nn
_ 17 O = A-
v(r,t) = [va/e_a)]J O _r) sin} ct (A-11)

where the first zero of JO(Xoa) gives Xoa = 2,405

The maximum deflecticn A occurs at the center when motion ceases

at time t = "a/c(koa) and since Jo(o) =1, (A-11) gives
= 3
5 Va/c(.oa)

Space differentiation of (A-11) yields the slope Yo which has a
magnitude maximum A at a radius r given by max[-Jé(\or)] =
max J. () r) = 0.582 and at time t = ma/c(X a). Thus r /a = ) r /) a =
i o (o] m om o

1.8/2.4 = 0.75 and
8 = . ) -
3 (V/e) J1(~ r ) (A-12)

The radial strain cr in the membrane can be shown to be yi/z.

Consequently, by (A-12), the maximum strain is
2 2

s o= / 3 -13)

max o (V/c) Jl(_orm) 2 (A-13)

The velocity V 1is now related to the projectile velocity V
and mass Mp by equating the initial momentum of the membrane to the

projectile mome vum. Thus
a

my J (L r) - 27rdr =MV
. o o p P

O
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which gives

Vel m/m +m ¢+ m )][('- a)/2y (v a)dlv (A-1.D
p m C P 0 i o P

«

By substituting V from (A-14) and ¢~ = 85'm = 5/Cm 4 mo* m})
i )

into (A-13) the maximum strain expression becomes

«

2, 2
a i . e ) ) Y ) /
max s [(loa)rl()olm' 27, () a ] [mp (m

i
rmoom ) Iv/2s (A-15)
\ c p’ ' p

Finally, to exhibit the effect of the membrane radius upon the maximum

strain, (A-13) is written as

max = =[O _a)_ (' r ) 23 ( a)]z[M /M + (m_ 4+ m )"a2jJ(M v2/')) /28
T o "1 om 1 o p T p m ¢ p T
(A-16)

The above analysis is applicable to a rigid-perfectly plastic
membrane cf maximum permissible tension S because the choice of initial
velocity distribution encures loading of all membrane elements until the
motion ceases. Thereafter, unloading occurs and the theory is no longer
applicable to a rigid-plastic membrane. However, our interest is in the

first loading vnhase of the membrane.

(a)
o] ! —_—5
a
. T
I
- (b} |
|

y,(l,O): VJO(Xof)

GA-T303- .4

FIGURE A-1 STRETCHED CIRCULAR MEMBRANE
{a} Coordinates, (b) Initial Velocity Distribution




Appendix I3

PRESSURE MEASUREMENTS WITH MANGANIN GAGES

AL, Introduction

The experimental method used to measure dynamic pressure makes
use of the piezoresistive property of manganin., For the pressure range
of interest in projectile-armor impact the pressurc-resistance relation-

ship in maunganin is fincar and well-defined, This relationsnip is

it

1 /R
| P
wvhere p 1s pressurce in kbar, k = 0,0028 kbarnl, AR is the change in
clectrical rcesistance due to the change in pressure, and R 1is the
initial resistance of the specimen, In this stress range ¢lectrical
inductance effects are small, Hence, for a manganin specimen through
which a slowly varying current is flowing, the fractional change in
resistance due to a change in pressure is well-approximated by the
fractional change in voltage across the specimen. The dynanmic pressure
is thus determined by mcasuring the fractional change in voltage and

employving the relation

p o= = L (B-1)

where V. is the change in voltage due to the change in pressurc ana

V is the initial voltage.

Manganin is cmbedded in the material through which the pressure
pulse travels. Since the manganin pressure-resistance relationship is
indcependent of temperature and insensitive to final pressure and volume,
Eq. (B-!) is valid for any embedding material. Measurcements reported
in Secction V were made with manganin foil sandwiched between two ceramic

tiles,




. Egrrication

Figure B-ia shows the lavered construction of the manganin-coramic
page . The manganin, a onc-pirece ~ pattern (Fijpr, B-1b) of G,0)0L-inch-
thick foil, i« sandwiched between two 3~inch squnare coramic tiles.  The
gare 1s constructed by drilling ifour holes in one tile at points
corresponding to the four tips of the = pattern,  The manganin {foil is
then bended to the tile with a thin layer of C=7 cpoxy and the tips of
the foil are bent down intoe the hoies; the holes are then {§11ced with
an clectrically conducting dental amalgum. Copper wirces are cembedded
in the amalgum from the bacxk side of the tile providing tfour electrical
connections to the manganin foil. The sccond tile is then bonded to the
first tile with another thin laver of C-7 c¢poxy to complet: the gag:e

construction,

C. Experimental Arrangements

For gages impacted by steel flyer plates the experimeantal con-
tiguration shown in Fig. B-2 was used. The flyer plate covercd with
sheet cxplosive is suspended above the gage by four thin aluminum tabs
attached to a wooqden f{rame (Fig., B-2a3). Detonation of the explosive
accelerates the {lyer plate toward the gage but also causcs the plate
to undergo an angular displacement., To achieve a simultaneous impact
the gage is tilted by this same angle during the experimental setup as

shown in Fig. 2b.

For pages impacted by a flat-nosed steel projectile, the experi-
mental configuration shown in Fig., B-3 was used. After the projectile '
lcaves the barrel its flight is confined by three pesrallel steer guides
spaced 12()0 apart circumferentially around the projectile, This assurcs
a planar impact hetween the nose of the projectile and the target {ace.
Before the projectile impinges on the target it passes through an

¢lectrical switch that triggers the measuring circuit.

D, Instrumentation

The resistance of the manganin foil as a functio of time is

determined by measuring the voltage gcross the manganin specinen
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through which a constant current is r'lowing. This is accomplished with

the circuit 1llustrated schemetically in Fig., B-4,

The power supply is an RC circuilt with a time constant much longer
than the duration of the nressure pulses of interest, A DO, power <upply
charges the capacitor, Closiag switeh 1 discharges the eapacitor through o
26-k.. resistor and through the power leads to the manganin foil providing
a nearly constant current through the foil, For flying nlate experiments
switch 1 is closced at the same time an electrical pulse is applicd to
the detonator., For flat-nosed projectile experiments switch 1 1s closed
when the projeetile strikes the triggering switceh, The power supply
remaing on for a preset duration and is then shorted out by closing
switch 2 after the pressure pulse has passed the sensing c¢lement of the
papge,  Hence a nearly constant current is flowing throupgh the foil for

the duration of the pressure pulse.,

The voltage across the sensing clement of the manganin foil is
measured across the signal leads. Oscilloscope 1 displavs the voltage
across the signal leads beginning just before the power supply is turned
on and ending just after it is turned off, The arrival oif the pressure

pulse is illustrated on oscilloscope 1 in Fig. B-4,

A more accurate measurement of the amplitude of the pressure pulse
is made by oscilloscope 2, This displayvs the difference be ween the
signal shown on cscilloscope 1 and the same signal that has been delaved;
displacement on oscilloscope 2 is due only to the pressure pulse itself
and nct to the turn-on voltage. By emploving this technique the offset

voltage can be amplified for more accurate measurement.

Permanent records of the oscilloscope displays are obtained by
Polaroid cameras attached to the oscilloscopes. The initial voltage
V is read from oscilloscope 1 and the change in voltage 'V is read

from oscilloscope 2, The pressure is calculated from Eq. (B-1),
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